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We study string dynamics in the early universe. Our motivation is the pro-
posal of Brandenberger and Vafa, that string winding modes may play a key
role in decompactifying three spatial dimensions. We model the universe as a
homogeneous but anisotropic 9-torus filled with a gas of excited strings. We
adopt initial conditions which fix the dilaton and the volume of the torus,
but otherwise assume all states are equally likely. We study the evolution
of the system both analytically and numerically to determine the late-time
behavior. We find that, although dynamical evolution can indeed lead to
three large spatial dimensions, such an outcome is not statistically favored.



1 Introduction

An enduring challenge for string/M-theory is to provide a more complete
picture of the early universe than has been found using conventional, point-
particle approaches. To this end, a growing body of research has studied the
dynamics of strings and branes in a cosmological setting, as opposed to the
more widely investigated case of a static background. Intriguing but as yet
incomplete results have been found for higher dimensional cosmologies and
cosmologies based on braneworlds. These include mechanisms for resolving
or avoiding cosmological singularities, and for generating subtle modifications
to the primordial microwave background power spectrum. Further progress
on these key theoretical and observational issues, however, requires a more
refined grasp of the dynamical properties of strings and branes when sub-
ject to extremes of temperature, density, and curvature. The current paper
provides a modest step in this direction.

The formalism we develop can, in principle, be applied to a wide range
of string cosmology questions. But following our earlier works [1] [2], our
immediate goal is to find a dynamical mechanism within string/M-theory
that generically gives rise to a universe with precisely three large spatial
dimensions, with all other spatial dimensions unobservably small. Such an
asymmetric dynamical evolution is perhaps the most basic task of string/M
cosmology. However, a decade and a half after the first attempt, no satisfac-
tory picture has yet emerged.

By way of brief history, in [3] and [4] the authors made use of T-duality
in a (spatially) toroidal universe to argue that strings wound around nontriv-
ial cycles impede the growth rate of the spatial dimensions they wrap. The
fastest expansion will therefore be achieved by dimensions that shed all their
winding modes through string winding/anti-winding annihilations. Because
string worldsheets are two-dimensional, pairs of strings will generically inter-
sect in four or fewer spacetime dimensions, leading [3] and [4] to argue that
at most three spatial dimensions will shed their windings and subsequently
grow with time. Various aspects of this proposal have been investigated and
generalized. In [5], a numerical study of a gas of strings in a toroidal uni-
verse was carried out and the naive dimension counting argument for string
annihilations used in [3] (2+2 = 3+1) was verified in a static background.
In [6], the analysis was further extended to simply connected toroidal orb-
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ifolds, and it was argued that pseudo-winding modes with sufficiently long
lifetimes could allow the arguments of [3] to apply in phenomenologically
relevant backgrounds. In [7], higher dimensional branes were included in the
analysis, without invalidating the conclusions of [3]. Other studies of string
windings and brane gases can be found in [8]-[24].

All these works, however, fail to account for the detailed cosmological
dynamics. In [1] we partially addressed this deficiency by using eleven-
dimensional supergravity to study cosmological evolution in the presence of a
brane gas and found encouraging results: for a suitable configuration of brane
wrappings suggested in [7] and [1] and based on naive dimension counting
arguments, the dynamics does indeed drive an asymmetric evolution yield-
ing three large dimensions. In [2] we went further and studied the coupled
Einstein-Boltzmann equations for a thermal brane gas and found that despite
the naive dimension counting arguments, only highly specialized initial condi-
tions yield the desired brane wrapping configuration. In particular, we found
that the spatial expansion driven by the brane gas is generically too fast for
brane interactions to generate the expected anisotropies; instead, the branes
quickly freeze out. However, this analysis still held out the possibility of a
loop-hole that would allow one to evade this discouraging conclusion. In the
string theory corner of M-theory moduli space (the very scenario studied in
Brandenberger and Vafa’s initial paper [3]), the growth of spatial dimensions
appeared to be slower, perhaps allowing sufficient string-string interactions
to yield the desired asymmetric winding configuration and hence asymmet-
ric expansion. The main purpose of this paper is to study this possibility in
detail.

In section 2 we set up the basic framework of dilaton gravity, and in sec-
tion 3 we discuss the equilibrium thermodynamics of a string gas. In section 4
we introduce the Boltzmann equations which govern string annihilation and
give a preliminary discussion of the phenomenon of freeze-out. In section 5
we describe our method for sampling from the possible initial states of the
universe, and discuss holographic bounds on the space of initial conditions.
In section 6 we present numerical results, and show that other than for a
narrow range of initial conditions we get “all” or “nothing” evolution: either
there are too few strings to keep any spatial dimensions small, or string inter-
actions freeze out so quickly that a large number of wrapped strings survive
and prevent any dimensions from growing large.
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2 Dilaton gravity

We start with type II string theory compactified on a 9-torus, with metric

ds2 = −dt2 + α′
9
∑

i=1

e2λi(t)dθ2
i 0 ≤ θi ≤ 2π . (1)

The action for dilaton gravity is

S =
1

2κ2
10

∫

d10x
√−g e−2φ

(

R + 4(∂φ)2 + · · ·
)

(2)

where (Polchinski [25], 13.3.24) κ2
10 = 1

2
(2π)7(α′)4. From now on we set

α′ = 1. Following Tseytlin & Vafa [4], we define the shifted dilaton

ϕ = 2φ −
∑

i

λi (3)

so that the action reads

S = (2π)2

∫

dt e−ϕ
(

∑

i

λ̇2
i − ϕ̇2

)

. (4)

When one couples dilaton gravity to a matter system the time-time compo-
nent of the Einstein equations yields the Hamiltonian constraint (or Friedman
equation)

(2π)2e−ϕ
(

ϕ̇2 −
∑

i

λ̇2
i

)

= E (5)

where E is the total matter energy. This constraint implies that ϕ̇2 never
vanishes; we choose the direction of time so that ϕ̇ < 0. The dilaton equation
of motion is

ϕ̈ =
1

2

(

ϕ̇2 +
∑

i

λ̇2
i

)

. (6)

The scale factors obey

λ̈i − ϕ̇λ̇i =
1

8π2
eϕPi (7)

where the “total pressure” Pi = − ∂F
∂λi

is obtained by varying the matter free

energy with respect to λi. Pi is equal to the ordinary pressure in the ith

direction times the spatial volume.
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Note that T-duality in the ith direction takes the simple form

λi → −λi, ϕ invariant .

This leaves the dynamics unchanged, provided that E is invariant and Pi

changes sign.

To get oriented we first study the vacuum equations, with all pressures
set to zero. The equations of motion reduce to

ϕ̈ =
1

2

(

ϕ̇2 +
∑

i

λ̇2
i

)

(8)

λ̈i − ϕ̇λ̇i = 0 . (9)

Besides the trivial solutions in which the dilaton and radii are constant, a
Kasner-like branch of solutions can be obtained as follows. If the pressures
vanish the energy E is conserved. Then (8) can be reduced to an equation
just for ϕ, with general solution

ϕ(t) = log

[

16π2/E

t(t + C)

]

(10)

(we have suppressed one constant of integration corresponding to an arbitrary
shift in t). One can then integrate the λi equations of motion to find

λi(t) = Ai + Bi log
t

t + C
. (11)

The constants of integration Ai are arbitrary, while in order to satisfy the
Hamiltonian constraint Bi and C must satisfy C2 (1 −

∑

i B
2
i ) = 0. Thus

either C = 0 and the radii are static, or
∑

i B
2
i = 1 and the radii are time

dependent. In both cases, the dilaton rolls monotonically towards weak cou-
pling.

We now turn to the the late-time asymptotic behavior of solutions to the
dilaton-gravity equations.1 First suppose the pressure is negligible, Pi ≈ 0,
as is the case for a universe in equilibrium with all radii sufficiently close to
the self-dual radius. At late times the universe will approach the Kasner-like
solution (10), (11), with the asymptotic behavior

eϕ ∼ const.

t2
eλi ∼ const. (12)

1A similar analysis was performed for M-theory in [1].
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Thus if Pi ≈ 0 the dilaton rolls monotonically while the radii approach
constants in string frame.2

Now suppose that at late times we have m unwrapped dimensions x1 · · ·xm

and 9 − m wrapped dimensions xm+1 · · ·x9.3 Without loss of generality we
can go to a T-dual frame where the unwrapped dimensions are all larger
than string scale. In this frame we expect that at late times the universe
will be dominated by a radiation gas in the unwrapped dimensions; the pres-
sures should vanish in the wrapped dimensions due to a cancellation between
winding and KK modes. That is, we expect

Pi ∼
{

e−λi i = 1, . . . , m
0 i = m + 1, . . . , 9

(13)

An ansatz which captures the late-time behavior is

eϕ ∼ 1

tα
eλi ∼

{

tβ i = 1, . . . , m
const. i = m + 1, . . . , 9

(14)

Plugging this ansatz into the equations of motion fixes

α =
2m

m + 1
β =

2

m + 1
. (15)

The dilaton rolls monotonically to weak coupling, while the unwrapped di-
mensions grow with time and the wrapped dimensions have fixed sizes. Thus
if the string winding dynamics in the early universe favors m = 3, as sug-
gested by the dimension counting argument reviewed in the introduction, one
could naturally explain why three spatial dimensions become large.

3 Equilibrium thermodynamics

In a coupled matter/gravity system the matter energy is determined by the
Hamiltonian constraint (5). For stringy matter Tseytlin & Vafa [4] long ago
presented a simple picture of the corresponding thermodynamics which is
suitable for our purposes. There are two possible phases.

2This was also shown in section 5 of [1]. To relate the two solutions note that [1] worked

in terms of M-theory time tM , related to the string-frame time used here by tS ∼ t
3/4

M .
3A dimension xi is called unwrapped if λi > 0 and the number of winding strings

vanishes, or if λi < 0 and the number of momentum modes vanishes.
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3.1 Hagedorn phase

Strings have a limiting Hagedorn temperature [26]. For weakly-coupled type
II strings the limiting temperature is TH = 1

π
√

8
. Near this temperature the

canonical ensemble fails and one must use the microcanonical ensemble [27].
In the Hagedorn phase the universe contains a dense gas of winding and KK
modes. To a good approximation the free energy F = E − THS vanishes, so
the microcanonical entropy is given by S(E) = E/TH . The total pressure
also vanishes, Pi = − ∂F

∂λi

= 0.

The thermodynamics of strings in the Hagedorn phase has been studied
by Deo, Jain and Tan [28, 29]. They employ the microcanonical ensemble,
with a fixed energy E and a fixed net winding charge in the universe; in a
compact space the latter vanishes. They show that the average number of
type II strings present with winding charge vector w and energy ǫ is given
by

D(ǫ,w, E) =
N

ǫ
u(ǫ, E)d/2e−u(ǫ,E)wT A−1

w/4 (16)

where

N =
(2
√

π)
−d

√
det A

u(ǫ, E) =
E

ǫ(E − ǫ)

Aij =
1

4π2R2
i

δij

Here Ri ≡ eλi . As a consistency check, note that the total amount of energy
in strings indeed adds up to E:

∫ E

0

dǫ

∫

ddw ǫD(ǫ,w, E) = E.

We will ignore diagonally-wound topologies (where a string is simultane-
ously wound on several dimensions) and assume that we have 9 unidimen-
sional string gases. That is, we set d = 1 and assume that the total energy
available to each dimension is 1/9 of the total energy in the universe. Thus
the distribution for a single winding charge wi is given by

D(ǫ, wi, E) =

√
πR

ǫ

√

u(ǫ, E/9) exp
[

−u(ǫ, E/9)w2
i π

2R2
i

]

. (17)
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The (thermally averaged) total number of positive windings Wi is then given
by

〈Wi〉 =

∫ E/9

0

dǫ

∫ ∞

0

dwi wiD(ǫ, wi, E) =

√
E

12
√

πRi
. (18)

Note that in (18) we are only counting positive winding in some direction;
the net winding is zero. The total length of string present is proportional to
the energy E, while the physical distribution of string on the torus amounts
to a random walk. Thus the average positive winding is simply the average
distance from the origin of a random walk. This goes as the square root of
the length, or equivalently the square root of the energy.

We have computed the average number of winding modes, but a similar
result holds for the average amount of positive KK momentum present, just
by replacing Ri → 1/Ri:

〈Ni〉 =

√
ERi

12
√

π
. (19)

3.2 Radiation phase

Below the Hagedorn temperature the string oscillators make a negligible
contribution to the partition function, so we can focus on single-string states
which are labeled by an integer-valued momentum vector ni and an integer-
valued winding vector wi. In the absence of a B-field the string energy levels
are

ǫ(n,w) =

√

√

√

√

∑

i

(

(

ni

Ri

)2

+ (wiRi)
2

)

.

The corresponding free energy for a gas of strings is

βF = 128
∑

n·w=0

log tanh(βǫ(n,w)/2)

where we have taken into account that for the type II string we have 128
bosonic and 128 fermionic species of excitations. The condition n · w =
0 enforces level matching. For dimensions which are large compared to a
thermal wavelength we can approximate momentum sums by integrals and
neglect winding; likewise for dimensions which are small compared to an
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inverse thermal wavelength we can approximate winding sums by integrals
and neglect momentum. Any remaining intermediate-sized dimensions are
frozen, with no excitations. Thus we have an approximate expression for the
free energy

βF ≈ 128
∏

large

2πRi

∏

small

2πα′

Ri

∫

ddp

(2π)d
log tanh(β|p|/2) (20)

where d is the total number of unfrozen dimensions. At this point it is
convenient to order

|λ1| > |λ2| > · · · > |λ9| (21)

and to define the T-duality invariant ‘volume’ of the d unfrozen dimensions

Vd =

d
∏

i=1

2πe|λi| . (22)

Then (20) can be identified with the free energy of a massless ideal gas in d
spatial dimensions in a box of volume Vd. To write an equation of state we
use the fact that in d spatial dimensions an ideal gas has an energy density
ρ = cdT

d+1, where (for 128 bosonic and 128 fermionic degrees of freedom)

cd = 128 · 2d!ζ(d + 1)

(4π)d/2Γ(d/2)
(2 − 2−d) . (23)

The energy, entropy and total pressure of the gas are given by

E = cdVdT
d+1

S =
d + 1

d
cdVdT

d

Pi = −∂F

∂λi
=

{

sign(λi)E/d i = 1, . . . , d
0 i = d + 1, . . . , 9

However we still need to determine d. If the energy is very small then all
dimensions are frozen. As the energy increases λ1, λ2, . . . will successively
unfreeze. This means that the temperature in the radiation phase is given
by

Trad = min
k

(

E

ckVk

)1/(k+1)

. (24)
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The value of k which minimizes the right hand side is equal to the number
of unfrozen dimensions. Trad calculated in this way could be larger than
the Hagedorn temperature; this signals that the system is actually in the
Hagedorn phase. That is the true temperature of the system is min(Trad, TH).

In the radiation phase we can compute the amount of positive KK mo-
mentum present in equilibrium by using the fact that for a one-dimensional
massless gas 〈Ni〉 is related to the pressure by

〈Ni〉 =
1

2
PiRi. (25)

This estimate makes sense for Ri ≫
√

α′, in which case we also have 〈Wi〉 = 0.
If on the other hand Ri ≪

√
α′ we just use the T-dual formulas

〈Wi〉 = −1

2
Pi/Ri (26)

〈Ni〉 = 0.

4 Winding and KK Annihilations

4.1 Boltzmann equations

If the universe was in equilibrium we could just insert the results of the previ-
ous section into the dilaton-gravity equations of motion. But the Brandenberger-
Vafa scenario is driven by departures from thermal equilibrium. A crude way
to keep track of these departures is to let Wi be the amount of positive wind-
ing charge around dimension i. Likewise let Ni be the amount of positive
Kaluza-Klein momentum in direction i. Of course since the space is com-
pact there must also be Wi units of anti-winding charge and Ni units of
anti-KK-momentum.

Let us, for the time being, assume that each unit of charge is carried by
a single string: that is, there are Wi strings each wound once with positive
orientation, similarly for the KK modes. We will also, for the time being,
assume that the strings have no oscillator excitations. Then the annihilation
of these momentum and winding modes is governed by Boltzmann equations,
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similar to the equations that govern the evolution of M2-brane winding [2]:

dNi

dt
= −〈f(v)〉

2π
eϕ−2λi(N2

i − 〈Ni〉2) (27)

dWi

dt
= −〈f(v)〉

2π
eϕ+2λi(W 2

i − 〈Wi〉2)

The cross-section for bosonic wound strings was calculated by Polchinski [30],
who found f(v) = 2/(1−v2) for two anti-parallel strings moving with velocity
v. Subsequent studies have evaluated this quantity for F- and D-strings [31].
We will set f(v) ≈ 2, appropriate for a gas of slowly-moving strings.

Let us make a few comments on the structure of these Boltzmann equa-
tions. First, note that they are invariant under T-duality. Second, note that
they respect the dimension-counting arguments of Brandenberger & Vafa
[3]. An implicit factor of the inverse volume of the universe is present in the
definition of eϕ (3). But due to the factor e2λi upstairs in the equation for
dWi/dt, strings wrapped on a large 3-torus will still be able to annihilate
effectively, just like particles moving in one large spatial dimension. Finally,
we should contrast our Boltzmann equations with the results presented in [9],
which were appropriate for strings with a dilaton-independent cross-section
such as cosmic strings.

Continuing our study of the Boltzmann equations, we now include string
oscillator excitations but still restrict attention to unit winding and mo-
mentum charges. With oscillators excited a more accurate cross-section is
obtained by replacing4

exp(−λi) → ǫi

in the Boltzmann equation for dNi/dt, where ǫi is the average energy of a
string with a unit of KK momentum. Likewise in the dWi/dt equation we
should replace

exp(+λi) → δi

where δi is the average energy of a unit winding string. This is supported
by the results of Lizzi and Senda [32], who redo Polchinski’s calculation for
two highly excited strings – which have many oscillator excitations but no
winding – and show that the interaction rate goes like the product of the

4We thank R. Myers for bringing this issue to our attention.
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energies of the two strings. This modifies the Boltzmann equations to read

dNi

dt
= −1

π
eϕ〈ǫi〉2(N2

i − 〈Ni〉2)
dWi

dt
= −1

π
eϕ〈δi〉2(W 2

i − 〈Wi〉2). (28)

We may estimate the typical energy per momentum or winding mode from
the distributions given in the previous section:

Hagedorn phase : 〈ǫi〉 =
E

9〈Ni〉
(momentum modes)

〈δi〉 =
E

9〈Wi〉
(winding modes) (29)

Radiation phase : 〈ǫi〉 = 1/Ri (momentum modes)

〈δi〉 = Ri (winding modes) .

Here we have assumed that in the Hagedorn phase the energy is equally dis-
tributed between dimensions. Note that in the Hagedorn phase the average
energy per mode scales as

√
E.

Finally we consider strings that are multiply wound around each dimen-
sion, so that the number of positively-wound strings and the winding charge
Wi are not necessarily the same. We may think of the winding charge as
made up of Wi open unit strands that are braided together to form closed
strings. Depending on the braiding, there can be anywhere from 1 to Wi

closed strings present. Also depending on the braiding, an individual closed
string can carry anywhere from 1 to Wi units of winding charge. There are
Wi! ways of braiding the strands; we assume all braidings are equally likely.
Then the typical strand is part of a closed string that carries winding charge
(Wi + 1)/2. The cross-section of a string is proportional to its length and
hence winding charge, thus we expect the typical string-string cross-section
to be enhanced by a factor ((Wi + 1)/2)2. Making this modification to the
cross-section, and rewriting the Boltzmann equation as an equation for the
rate of change of the positive winding charge, a net enhancement factor of
(Wi + 1)/2 appears on the right hand side relative to (28).

With an analogous modification for multiple-momentum strings the Boltz-
mann equations read

dNi

dt
= −(Ni + 1)

2π
eϕ〈ǫi〉2(N2

i − 〈Ni〉2) (30)
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dWi

dt
= −(Wi + 1)

2π
eϕ〈δi〉2(W 2

i − 〈Wi〉2)

where the average energies per strand are still given by (29).

One could question our assumption that all braidings are equally likely.
Although this seems like a reasonable assumption when the universe is small,
on entropic grounds it could be that as some dimensions grow large singly
wound strings become favored. Rather than study this issue directly, in our
numerical work we will investigate the two extreme possibilities: all strings
singly-wound as in (28), or all braidings equally likely as in (30).

4.2 Freeze-out

In an expanding universe the evolution of a species depends on the species’
annihilation rate Γ and the cosmological expansion rate (or Hubble param-

eter) Ṙ/R = λ̇. For dilaton gravity one also needs to take into account the
rate of change of the dilaton ϕ̇. To determine whether a nonzero number of
strings survive to the asymptotic future, we need to study how these param-
eters evolve. If the annihilation rate of wound strings decreases too rapidly it
could undermine the naive dimension counting arguments, which implicitly
assume that Γ remains non-zero.

To illustrate the possibility of freeze-out consider the following simple
situation. At some initial time set all λi = 0. Introduce the same number
of unit winding and unit momentum strings in all directions: Ni = Wi ≡ N .
Suppose further that no oscillators are excited. Then the pressures Pi all
vanish, and it is consistent to set the logarithmic scale factors λi = 0 for all
time. The remaining equations of motion are very simple. As explained in
section 2, the shifted dilaton obeys ϕ̈ = 1

2
ϕ̇2 with solution

eϕ =
A

(t − t0)2
.

Here A and t0 are two constants of integration. As expected the dilaton rolls
monotonically to weak coupling. The Boltzmann equation (for singly-wound
strings) reads

dN

dt
= −1

π
eϕ〈ǫ〉2

(

N2 − 〈N〉2
)

.
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To get a feel for whether the strings will freeze out it suffices to set 〈N〉 = 0.
Then the general solution is

1

N(t)
=

1

N(t1)
+

1

π

∫ t

t1

dt′ eϕ〈ǫ〉2 . (31)

As long as the integral stays finite as t → ∞ a non-zero fraction of the strings
will freeze out. In the case at hand the pressure vanishes, which means the
total energy in matter does not change with time; since the radii are fixed
the average energy per string 〈ǫ〉 also remains constant. Then the integral is
strongly convergent, and

1

N(t)
=

1

N∞
− A〈ǫ〉2

π(t − t0)
.

Here we have defined 1/N∞ ≡ 1/N(t1) + A〈ǫ〉2/π(t1 − t0). As t → ∞ a
non-zero fraction of the unit winding and unit momentum strings do freeze
out, with N(t) → N∞.

This sort of behavior should be fairly generic, even for solutions that do
not sit precisely at the self-dual radius. The pressure vanishes as long as
one remains in the Hagedorn phase, giving give rise to a conserved matter
energy. Moreover, if the radii change slowly with time, the average energy
per string still remains roughly constant. The dilaton, however, will still
roll monotonically towards weak coupling, and as long as it does so quickly
enough for the integral in (31) to converge, some strings will freeze out. The
enhanced cross-section due to multiple winding in (30) does not change this
outcome.

This is troubling for the Brandenberger-Vafa scenario, as it shows that
simple dimension-counting arguments can fail to capture the true dynamics
of winding strings. Our goal in the remainder of this paper is to undertake
a detailed numerical investigation of the likelihood of freeze-out.

5 Initial conditions and Holography

We would like to choose initial conditions at random, so as to uniformly
sample the possible states of the early universe. In practice we proceed by
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fixing the initial value of the shifted dilaton ϕ and the initial volume of the
universe V . All other degrees of freedom will be given random initial values,
drawn from the probability distribution worked out below.

Ideally, we would average over all possible values of the “coordinates” λi, ϕ
together with their canonical momenta using the Liouville measure obtained
from the action (2). The microcanonical volume of phase space for dilaton
gravity plus matter is

Ω ∼
∫

d9λ d9λ̇ dϕ dϕ̇ e−10ϕeS (32)

where S is the matter entropy. In the Hagedorn phase this is given by

S = E/TH = (2π)2e−ϕ(ϕ̇2 −
∑

i

λ̇2
i )/TH . (33)

Thus at the level of supergravity the initial conditions which maximize the
entropy are

ϕ → −∞ weak string coupling and large volume

ϕ̇ → −∞ effective coupling rapidly decreasing

λ̇i = 0 constant size of torus

(34)

To set initial conditions we first fix a value of ϕ. In order for effective su-
pergravity to be valid we must have eϕ ≪ 1. Note that since we’re working
with effective supergravity, not string theory, only the value of the shifted
dilaton matters and we don’t need to worry about the underlying dilaton φ
defined in (3) becoming large. Next we fix a value for ϕ̇. For supergravity to

be valid we must have ϕ̇ & −1. Then from (33) note that the λ̇ are Gaussian
distributed, with a characteristic spread

(∆λ̇i)
2 = TH(2π)−2eϕ . (35)

For simplicity we take the λ̇i’s to be uniformly distributed about zero, in
the interval [−

√
TH(2π)−1eϕ/2,

√
TH(2π)−1eϕ/2]. Note that for ϕ < 0 we’ll

have −1 < λ̇i < 1. The scale factors λi do not appear in the entropy, so we
take them to be uniformly distributed, subject only to the constraint that
the T-duality invariant 9-volume V defined in (22) has the specified value:
∑

i |λi| = log(V/(2π)9).
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Following the M-theory analysis of [2], we can ask about the holographic
bound [33, 34, 35, 36]. This is

S ≤ AE

4G
=

2πAE

κ2
=

2πΩ8R
8
E

1
2
(2π)7(α′)4

(36)

where Ω8 is the area of a unit S8 and the subscript E reminds us that this
must be calculated in the Einstein frame. We wish to convert this to string
frame, with (note that the regular dilaton, not ϕ, appears below)

RE = e−φ/4RS (37)

making

S ≤ 2Ω8π
8

(2π)6
e−ϕ−λ (38)

on an isotropic torus. Comparing to the initial value we get a bound (again
assuming we start in the Hagedorn phase)

S = π
√

8(2π)2e−ϕ

(

ϕ̇2 −
∑

i

λ̇i

)

≤ 2Ω8π
8

(2π)6
e−ϕ−λ (39)

π
√

8(2π)2ϕ̇2 ≤ 2Ω8π
8

(2π)6
e−λ (40)

2πeλ ≤ Ω8

128
√

2ϕ̇2
(41)

We can interpret this as a bound

V ∼ (2πeλ)9 ≤
(

Ω8

128
√

2ϕ̇2

)9

=

(

π4

420
√

2ϕ̇2

)9

(42)

or equivalently

ϕ̇2 ≤ 0.16

V 1/9
. (43)
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6 Numerical Analysis

6.1 Initial Conditions

Our simulations proceed by generating multiple sets of initial data, solving
the equations of motion numerically, and looking at the number of wrapped
dimensions at late times after freeze-out has taken place. In each run we
fixed the initial values of V and ϕ. For the most part we started with
ϕ̇ = −1; this maximizes the entropy while keeping supergravity valid.5 All
other initial conditions are allowed to fluctuate randomly. The λ̇i are chosen
from the flat distribution described in the previous section. The initial λi

are generated by choosing nine random numbers in [−1, 1] and applying an
overall scaling so that the initial volume matches the specified value. To
assign initial values to Ni and Wi we compute the mean values from section
3 and then add random thermal fluctuations about the mean, of magnitude

∆Ni ≈
√

〈Ni〉 ∆Wi ≈
√

〈Wi〉 . (44)

Note that we do not impose the holographic bound (43) on our initial data;
we have some comments on this below.

To evolve the system we use a Runge-Kutta algorithm. At each time step
we begin by computing the total matter energy from the Hamiltonian con-
straint (5). The equilibrium thermodynamics discussed in section 3 enables
us to decide whether the system is in a Hagedorn or radiation phase. Based
on this we compute the corresponding thermal expectation values 〈Ni〉, 〈Wi〉.
We then use the equations of motion to evolve to the next time step.

The dilaton-Einstein equations of motion are given in (6), (7). To solve
them we need an expression for the pressures Pi. We set6

Pi = 2
(

Nie
−λi − Wie

λi

)

. (45)

5Note that we are considering the case where the dilaton is rolling towards weak cou-
pling.

6Here we are relating the actual pressures Pi to the actual values of Ni and Wi, allowing
for departures from thermal equilibrium. Thus (45) should not be confused with (25), (26)
where we used the equilibrium pressures to compute the thermally averaged values of Ni

and Wi. Of course for a system in equilibrium the expressions are compatible.
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This simple estimate is valid when no oscillators are excited; thus it should
be accurate in the radiation phase. In the Hagedorn phase oscillators are
excited and the pressure receives corrections. However given the equilibrium
values of Ni and Wi in the Hagedorn phase (18), (19) note that on average
a cancellation makes the pressure vanish. Thus, although it would be nice
to have a more precise expression for the pressure, we do not expect any
refinements to (45) to significantly affect our results.

The Boltzmann equations were discussed in section 4. To allow for the ef-
fects of multiply-wound strings we ran simulations using two different versions
of the Boltzmann equations given in (28) and (30). The first is appropriate
for strings that only carry one unit of winding or momentum charge, while
the second is appropriate for strings with multiple winding or momentum
charges.

In Figure 1 we show what happens when we vary the initial values of ϕ
and V , starting with the initial condition ϕ̇ = −1. We show the average
number of wrapped dimensions present both in the initial configuration and
after freeze-out. Clearly a final state with three unwrapped dimensions is
not dynamically favored. If one begins at reasonably strong coupling then
very few strings are present in the initial state, while if one begins at weak
coupling string interactions turn off too rapidly for the required annihilations
to occur. In either case three large spatial dimensions is not the most likely
late-time geometry.

We have explored what happens if the initial value of ϕ̇ is decreased, since
the holographic bound (43) restricts the allowed values of this quantity. In
Figure 2 we show the initial and final number of wrapped dimensions starting
with the initial condition ϕ̇ = −0.15. The qualitative outcome is the same,
just shifted to more negative initial values of ϕ. This is not surprising, given
the Hamiltonian constraint (5): roughly speaking a change in ϕ̇2 can be
compensated by shifting ϕ so as to keep the total energy fixed.

In Figure 3 we show the distribution of initial winding configurations for
universes that end up with three large dimensions. Although the number of
wrapped dimensions can either increase or decrease with time, it is unlikely
that one can begin deep in the Hagedorn phase with nine wrapped dimensions
and end up with a three dimensional universe.

In Figure 4 we show how the distribution of final winding configurations
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depends on the initial value of ϕ. Although for a rather narrow range of ϕ
three dimensions is the favored outcome, the distribution of final dimension-
ality is not very sharply peaked.

All results presented so far have been based on the multiply-wound cross
section (30). We have studied what happens if we evolve the system using the
singly-wound cross section (28). The change in the results is negligible, much
less than the widths of the distributions shown in Fig. 4. Thus the qualitative
outcome is the same, with no dynamical preference for three dimensions.

7 Conclusions

Our results indicate that – within the context of our approximations – the ex-
pansion of the universe has an “all or nothing” character. If initial conditions
are such that one begins with many wrapped strings, the strings typically
freeze out and keep all dimensions small. On the other hand if one begins
with few wrapped strings, the strings typically annihilate and all dimensions
decompactify. Between these extremes there are initial conditions that lead
to three large dimensions, but such initial conditions are not generic. Fine-
tuning the initial conditions to yield three large dimensions is thus possible,
but runs counter to the goal of the string gas program: finding a mechanism
in which generic initial data yields three large spatial dimensions.

The unexpected chink in the Brandenberger-Vafa scenario we have found
is that due to the rolling dilaton the string annihilation cross section be-
comes weaker than previously realised. To avoid this impasse we would need
a mechanism for keeping the string annihilation cross section sufficiently ro-
bust.7 There are ways in which this might be accomplished (e.g. strings
wound on finite fundamental groups [6], in confining backgrounds [31], or
having unusual kinematic configurations [37]), but as yet none have been
studied in adequate detail to determine their viability. Also we should note
that, even if one manages to stabilize the cross-section, one would still have
to face the issue that the gravitational back-reaction of an anisotropic string
gas turns off at late times, due to the factor eϕ which appears in the equa-

7To study the long-time behavior with an enhanced cross-section one should take ther-
mal fluctuations into account, not only in setting the initial conditions as in (44), but also
by adding an explicit noise term to the equations of motion.
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tions of motion (7). One might be tempted to postulate a mechanism which
stabilizes the dilaton, however this is problematic for reasons discussed in
[23]: with pure Einstein gravity strings should freeze out, along the lines of
our M-theory analysis [2].

Lest we appear too pessimistic, let us note some directions for future
study which might invalidate our conclusions.

• In this paper we have only studied decreasing dilaton solutions, whereas
there is also a class of increasing dilaton solutions. If the value of the
dilaton grew sufficiently large, the appropriate framework would be M-
theory, and the results of our previous paper [2] would apply. However,
it is possible that there is an intermediate time in which the dilaton is
large enough for string annihilations to be effective, yet small enough
for perturbative string theory to be relevant.

• In this paper we made a number of simplifying assumptions. In par-
ticular we assumed spatial homogeneity and only considered the radial
moduli of the torus. A more complete analysis at the level of effective
supergravity would be desirable; steps in this direction have been taken
in [19, 21, 24].

The failure of the string gas scenario to naturally lead to three large spa-
tial dimensions may be telling us one of three things. First, perhaps the string
gas (or brane gas) framework is supplanted by other dynamics in the early
universe, invalidating the approach we have been following. Second, per-
haps the measure (32) does not reflect the true distribution of possible initial
conditions of the universe. Third, perhaps three spatial dimensions is not
favored. If one imagines that many “universes” are created, all with different
initial conditions, then some sort of anthropic argument could be invoked.
But many people, including ourselves, are uncomfortable with anthropic ar-
guments until every other possibility has been explored. Consequently we
intend to return to these cosmological issues as our understanding of string
theory in the early universe improves.
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Figure 1: Average initial and final number of wrapped dimensions as a func-
tion of the initial coupling and initial volume, starting with ϕ̇ = −1 and
evolved using the multiply-wound cross section. The volume is measured in
units of (2π

√
α′)9.
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Figure 2: Illustrates the dependence on the initial value of ϕ̇. Same as Fig. 1
except the simulations begin with ϕ̇ = −0.15.
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Figure 3: A histogram showing the distribution of the initial number of un-
wrapped dimensions for universes that end up three dimensional. Extracted
from the data set used to generate Fig. 1.
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Figure 4: Histograms showing the distribution in the number of unwrapped
dimensions at late times for various initial values of ϕ. Each histogram is
based on 103 simulations at an initial volume V = 4.0 × (2π

√
α′)9 and an

initial ϕ̇ = −1.
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